Назначение предохранителей. Виды предохранителей: назначение, описание, маркировка Плавкие предохранители для электронных устройств

Предохранители применяют для защиты электрических цепей и элементоэлектроустановок от токов короткого замыкания или токов перегрузок.

Предохранитель встраивается в разрыв электрической цепи. Его основной задачей является пропускание рабочего тока и разрыв электрической цепи при появлении сверхтоков. Различают предохранители низковольтные (до 1 кВ) ивысоковольтные (свыше 3 кВ), однако по назначению и принципу действия они полностью совпадают. Также выделяют силовые и быстродействующие предохранители.

Низковольтные предохранители конструктивно представляют собой довольно простое устройство. Токопроводящий элемент (плавкая вставка) под воздействием тока, значение которого выше номинальной величины, нагревается, расплавляется в дугогасящей среде (чаще всего это кварцевый песок SiO2) и испаряется, создавая разрыв в защищаемой электрической цепи.

Изолятор препятствует выходу горячих газов и жидкого металла в окружающую среду. Он изготавливается из высокосортной технической керамики и должен выдерживать при отключении очень высокие температуры и внутреннее давление.

Защитные крышки имеют планки для захвата унифицированными рукоятками для замены плавких вставок низковольтных предохранителей. Вместе с керамическим корпусом они создают взрывонепроницаемую оболочку для коммутационной электрической дуги.

Песок, в свою очередь, важен для ограничения силы тока. Обычно применяется кристаллический кварцевый песок с высокой минералогической и химической чистотой (содержание SiO2 > 99,5%).

Для коммутационной функции важным являются определенный размер кристаллов песка и оптимальное его уплотнение.

Индикатор позволяет быстро находить сгоревшие предохранители. При повышенной жесткости пружины он может служить ударным сигнализатором для приведения в действие микропереключателей или разъединителей.

Припой сдвигает характеристическую кривую к меньшим значениям тока плавления. Он подбирается в соответствии с материалом плавкого элемента и должен находиться в нужном количестве и в нужном месте.

Контактные ножи механически и электрически соединяют плавкую вставку с держателем-основанием предохранителя. Они изготавливаются из меди или медного сплава с покрытием из олова или серебра.

Традиционными материалами, из которых изготовляются плавкие вставки это: медь, цинк, серебро, обладающие необходимым удельным электрическим сопротивлением.

Основным преимуществом при использовании предохранителя с плавкой вставкой является эффект токоограничения. То есть время расплавления плавкой вставки является достаточно малым и, как следствие, ток короткого замыкания не успевает достигнуть своего максимального значения.

Очевидно, что при номинальном уровне тока или меньшем его значении плавкая вставка должна проводить электричество неограниченное количество времени.

Для ускорения времени работы плавкой вставки применяют следующие технические решения:

· плавкие вставки с участками различной ширины (сечения)

· металлургический эффект в конструкции плавких вставок

За счет снижения сечения (сужения) плавкой вставки в определенных местах достигается требуемое - меньшее время размыкания цепи.

Металлургический эффект заключается в следующем: отдельные легкоплавкие металлы (например, свинец и олово) способны растворять в своей структуре более тугоплавкие металлы, такие как медь и серебро.

Для этого на медные проволочки наносятся капли олова. При нагреве сверхтоком оловянные капли быстро расплавляются, расплавляя при этом и часть проволок. Далее используется механизм работы плавкой вставки со сниженным сечением в определенных местах.

Основной причиной продолжающегося роста числа пользователей плавких предохранителей помимо крайне выгодного соотношения цены и результата, а также незначительной занимаемой площади является их общеизвестная надежность, которая характеризует предохранители как «последнюю линию защиты». Только сертифицированные предохранители с плавкими вставками, которые соответствуют заявленным характеристикам, позволят Вам избежать пожаров, возникающих в электропроводке и электроустановках.

БИЛЕТ № 9

  1. Назначение и общее устройство топливной системы дизеля 1-ПД4Д.

Топливная система предназначена для хранения, подогрева, очистки и подачи топлива в цилиндры дизеля обеспечивает своевременный впрыск в требуемой по­следовательности определенных порций топлива под высоким давлением в каме­ры сгорания цилиндров дизеля и распыливания его на мельчайшие частицы.

В систему входят топливоподкачивающий насос, топ­ливный насос высокого давления, трубопроводы низкого и высокого давления, топливный бак, топливоподогреватель, фильтры гру­бой и тонкой очистки, форсунки, регуляторы. Топливоподкачивающий насос засасывает топливо из расходного бака че­рез сетчатый фильтр грубой очистки и подает его под давлением не выше 0,53 МПа (5,3 кгс/см2) к топливному фильтру тонкой очистки, установленному на дизе­ле.

Разгрузочный клапан, установленный на магистрали от топливоподкачи­вающего насоса к фильтру, не допускает повышения давления в топливном тру­бопроводе выше 0,53 МПа (5,3 кгс/см2), перепуская излишнее топливо в расход­ный бак по сливной трубке.

Из топливного фильтра тонкой очистки отфильтрованное топливо поступает под давлением в коллектор топливного насоса высокого давления.

Давление 0,25 МПа (2,5 кгс/см2) в топливном коллекторе поддерживается регулирующим клапаном, отводящим избыток топлива по сливной трубе в бак. Клапан 6 и кран 7 служат для аварийного питания дизеля топливом. Топливный насос нагнетает топливо под высоким давлением в форсунки согласно порядку работы цилиндров дизеля.

Просочившееся топливо из форсунок и насоса высокого давления сливает­ся в расходный бак.

  1. Назначение и устройство секции топливного насоса высокого давления тепловоза ТЭМ18ДМ.

Топливный насос предназначенный для подачи в цилиндры дизеля под высоким давлением и в соответствии с нагрузкой строго определенных доз топлива на каждый цикл, состоит из следующих основных деталей: картера, кулачкового вала, толкателей, съемных плунжерных секций и коллектора.

Основными деталями секции топливного насоса (рис. 30, а) являются две прецизионные пары, выполненные с высокой точностью и смонтированные вместе с другими ее деталями в корпусе 22, отлитом из чугуна. Первая пара - насосный элемент состоит из гильзы 10 и плунжера /7, а вторая-клапанная пара - из нагнетательного клапана 5 и седла 6, Обе пары изготовлены из высоколегированной термически обработанной стали. Уплотнение в каждой паре достигается путем тщательной притирки одной детали к другой. Поэтому в случае повреждения одной из деталей пара заменяется новой.

Рис 30 Секция топливного насоса (а) и ее нагнетательный клапан (б): 1- нажимной штуцер, 2, 8 - полости, сообщающиеся с нагнетательным трубопроводом, 3 - пружина нагнетательного клапана, 4- упор; 5- нагнетательный клапан, 6 - седло нагнетательного клапана, 7 - резиновое уплотнителььое кольцо, 9 - надплунжерное пространство, 10 - гильза, 11- плунжер; 12 - вертикальный паз, 13 - кольцевая выточка; 14 - верхняя кромка, 15 - нижняя кромка, 16, 27 - стопорные вннты, 17 - регулирующая рейка, 18 - пружина плунжера, 19 - направляющий стакан, 20 - тарелка пружины нижняя, 21 - стопорное кольцо; 22 - корпус секции, 23 - пружинное кольцо, 24 - тарелка пружины верхняя, 35 - шестерня; 26 - отверстие, 28 - паз, 29 - всасывающая полость корпуса, 30-уплотннтельное медное кольцо; 31 - нагнетательный клапан; 32 - седло нагнетательного клапана, 33 - пружина нагнетательного клапана (1- до модернизации! 11- после модернизации)

Гильза 10 плунжера насосной пары выполнена в виде цилиндра с утолщенной верхней частью. Два сквозных отверстия 26 в верхней части соединяют надплунжерное пространство 9 гильзы с полостью 29 корпуса, к которой подводится топливо. Одно из этих отверстий на наружной поверхности гильзы имеет коническую зенковку, а другое - снабжено вертикальной канавкой, в которую входит стопорный винт 27, удерживающий гильзу от проворачивания. При этом отверстие для прохода топлива остается открытым. Нижним буртом гильза плотно притерта к кольцевой выточке корпуса.

Плунжер 11 состоит из цилиндрической головки и фасонного хвостовика, выполненных как одно целое. На поверхности головки в верхней части имеется кольцевая выточка 13, соединенная вертикальным пазом 12 с надплунжерным пространством 9. Нижняя кромка 15 выточки выполнена круглой, а верхняя -14 - фигурной по винтовой линии. На некотором расстоянии от торца головки плунжера она пересекается с кромкой вертикального паза 12. Винтовая кромка служит для отсечки и регулирования количества топлива, подаваемого плунжером. На хвостовике плунжера имеются два выступа и головка. Выступы входят в вертикальные пазы хвостовика шестерни 25, находящейся в зацеплении с регулирующей зубчатой рейкой 17, а головка опирается на донышко направляющего стакана 19, подпираемого снизу сферической поверхностью регулировочного болта 28 толкателя (см. рис. 29). На головку надета тарелка 20 (см. рис. 30, а) пружины 18, возвращающей плунжер в нижнее положение.

Клапанная пара установлена на верхний торец гильзы плунжера. Для обеспечения плотности седло клапанной пары притерто к торцу гильзы и прижато к ней нажимным штуцером 1. Плотность с корпусом секции обеспечивается резиновым кольцом 7. В центре седла 6 имеется отверстие, служащее гнездом для нагнетательного клапана 5.

Клапан 5 (рис. 30, б) выполнен полым. В нижней части он имеет игольчатый посадочный конус, в средней-боковое отверстие Е, а в верхней- кольцевой буртик П.

Буртик П разобщает нагнетательный трубопровод от надплунжерного пространства раньше, чем это выполнит игольчатый конус, а отверстие Е перепускает топливо из нагнетательного трубопровода в надплунжерное пространство 9 после разобщения их буртиком П.

Клапан прижимается к посадочному конусу седла пружиной 3, которая другим своим концом упирается в упор 4, служащий для ограничения подъема нагнетательного клапана.

БИЛЕТ № 10

  1. Назначение и устройство водяной системы дизеля 1-ПД4Д.

Установленный на тепловозах ди­зель имеет водяное охлаждение, необ­ходимость которого обусловлена вы­соким нагревом отдельных его частей, соприкасающихся с горячими газами. Уже в конце такта сжатия температу­ра воздуха в цилиндрах повышается до 500 - 700 °С, а при сгорании топ­лива она достигает 2000 °С. Даже от­работавшие газы на выхлопе имеют температуру 430 - 480 °С. Такой вы­сокий нагрев деталей мог бы вызвать значительную их деформацию, разру­шение, пригорание масла и, как след­ствие, заклинивание поршней в ци­линдрах.

Сильный нагрев деталей дизеля требует интенсивного охлаждения их водой, температура которой должна быть достаточно высокой во избежа­ние появления трещин в блоке, цилин­дровых втулках, крышках цилиндров и корпусе турбонагнетателя. Нагре­тая вода охлаждается в секциях ради­атора, а часть тепла, отводимого от дизеля водой, используется для вспо­могательных целей (подогрева топли­ва в баке и воздуха в кабине машини­ста в холодное время года).

На тепловозах вода используется также для охлаждения дизельного масла в водомасляном теплообменнике и надду­вочного воздуха перед поступлением его в цилиндры дизеля. Так как ох­лаждение масла и наддувочного воз­духа должно осуществляться водой с более низкой температурой по сравне­нию с водой, охлаждающей дизель, то водяная система имеет два самостоя­тельных контура циркуляции воды. Температура воды в основном контуре поддерживается в пределах 70 - 85 °С, а во вспомогательном - 60 - 70 °С. Циркуляцию воды в каждом контуре осуществляет специальный насос, получающий привод от колен­чатого вала дизеля.

Для охлаждения воды основного контура используются шестнадцать, а вспомогательного - восемь водяных секций, установленных в шахте холо­дильника. Оба контура объединены расширительным баком, укреплен­ным над шахтой холодильника

Водяная система дизеля закрытого типа с принудительной циркуляцией воды имеет два само­стоятельных контура охлаждения (горячий контур, холодный контур), каждый из которых имеет свой трубо­провод, водяной насос, секции холо­дильника и общий вентилятор охлаж­дения.

Система предназначена для отво­да тепла, выделяющегося при работе дизеля, для обогрева кабины ма­шиниста и осуществления прогрева дизеля перед запуском от посторон­него источника тепла.

Горячий (основной) контур пред­назначен для охлаждения выхлопных коллекторов, корпуса турбокомпрес­сора, втулок и крышек цилиндров дизеля. В холодное время года вода горячего контура используется для подогрева топлива в топливоподогревателе, обогрева кабины машиниста.

Водяным насосом 46, левым по хо­ду тепловоза, вода нагнетается в ох­лаждающие полости дизеля 42 и турбокомпрессор. Нагретая вода от­водится от дизеля в секции 53 хо­лодильника тепловоза и далее во вса­сывающую

полость водяного насоса 46. В холодное время часть воды из водяной полости левого выхлоп­ного коллектора дизеля отводится на обогрев в топливоподогреватель 29, калорифер 32, обогреватели пола ка­бины машиниста 34 и 65.

Холодный контур предназначен для отвода тепла от охладителя наддувочного воздуха и охладителей масла дизеля.

Водяным насосом 63, правым по ходу тепловоза, вода нагнетается в маслоохладитель 22 дизеля, секции 3 холодильника. Охлажденная вода далее прокачивается через масло­охладитель 59, холодильник надду­вочного воздуха 64 и поступает во всасывающий патрубок водяного на­соса 63.

Контроль температуры воды дизе­ля осуществляется дистанционным термометром 51, измеритель которого установлен в горячем контуре на выходе воды из дизеля, а указа­тель - на пульте кабины машиниста. На трубопроводе выхода воды из ди­зеля (горячий контур) и входа воды в маслоохладитель (холодный контур) установлены датчики реле температуры 58 и 60, которые подают сигнал на открытие жалюзи холодильника и на снятие нагрузки с дизеля (при превышении ‘максимально допусти­мой температуры воды).

Терморегуляторы 66 (в горячем и холодном контурах) автоматически

управляют частотой вращения венти­лятора холодильника, поддерживая температуру воды в оптимальных пределах.

Для контроля температуры воды в холодном контуре перед входом в маслоохладитель установлен изме­ритель дистанционного термометра 4, а указатель - на пульте в кабине машиниста.

Для периодических замеров тем­пературы воды в горячем и холод­ном контурах установлены грибки под ртутные термометры. Для перио­дических замеров давления воды в системе установлены грибки под ма­нометры и грибки под мановакуумметры.

Отвод пара и воздуха осуществ­ляется с помощью паровоздушных трубок в расширительный бак 12, который соединен подпиточными тру­бами с всасывающими патрубками водяных насосов 46 и 63.

Водомерное стекло 13 предназна­чено для контроля уровня воды в расширительном баке. На боковой поверхности бака нанесены две черты с надписями В.У.- верхний уровень воды и Н.У.- нижний уровень во­ды. Уровень воды в баке должен находиться между этими отметками. Заливная горловина 9, расположен­ная в верхней части бака, закры­вается крышкой, в которой вмонти­рован паровоздушный клапан 8. Для сообщения бака с атмосферой при заправке снизу тепловоза или пе­ред снятием крышки с паровоздуш­ным клапаном 8 имеется вестовая труба с краном 6.

Положение вентилей, краников и соединительных головок при работе дизеля, включении обогрева, прогре­ве топлива, прогреве дизеля от внеш­него источника, при заполнении сис­темы водой и сливе воды из сис­темы указано в таблице на рисунке.

На подпиточных и паровоздуш­ных трубах установлены вентили 11, 18, 19 и краник 7 с целью отсоединения водяного бака от сис­темы при опрессовке водяных поло­стей дизеля.

2. Назначение и устройство форсунки дизеля 1-ПД4Д.

Форсунка дизеля (рис. 32, а) предназначена для распыливания и распределения топлива в камере сгорания. Основной частью форсунки является распылитель, состоящий из прецизионной пары - корпуса 21 и иглы 2. Распылитель прикреплен снизу корпуса 4 форсунки гайкой 19. Верхний торец корпуса распылителя и сопрягаемый с ним торец корпуса форсунки имеют притертые между собой поверхности, которые обеспечивают плотность стыка. Для впрыска топлива в камеру сгорания в нижней части корпуса распылителя выполнена сферическая головка (рис. 32, б) с девятью отверстиями диаметром 0,35 мм, расположенными по окружности.

К седлу корпуса распылителя притерт запорный конус иглы 2 (см. рис. 32, а), который отделяет полость 24 форсунки от камеры сгорания. На хвостовик иглы в верхней части опирается своей шаровой поверхностью штанга 17, передавая ей усилие от пружины 7. Затяжка пружины отрегулирована (при помощи болта 10) на давление впрыска топлива 275 кгс/см2. После регулировки затяжки пружины болт 10 закрепляют контргайкой II и пломбируют.

При работе дизеля топливо, нагнетаемое топливным насосом, подается по трубопроводу высокого давления в штуцер 15, а оттуда, пройдя щелевой фильтр 16, канал 18, кольцевую выточку 20, по трем наклонным отверстиям 22 поступает в полость 24. Так как выходное отверстие корпуса распылителя закрыто иглой 2, прижатой к седлу пружиной, то давление в полости 24 будет резко повышаться, воздействуя на большой конус 1 направляющей части иглы. Когда сила давления топлива, стремящаяся приподнять иглу вверх, превысит силу затяжки пружины 7, игла распылителя приподнимается. При этом топливо будет с большой скоростью впрыскиваться из полости 24 через распыливающие отверстия головки корпуса распылителя в камеру сгорания.

Вследствие высокого давления в полости 24 часть топлива просачивается между иглой и корпусом распылителя во внутреннюю полость форсунки, смазывая трущиеся поверхности.

Просочившееся топливо отводится через сверление 13 и штуцер 14 в сливную трубу. Впрыск топлива прерывается, как только прекращается подача топлива насосом.

Рис. 32. Форсунка дизеля (а) и ее распылитель (б):

Большой конус иглы; 2 - игла распылителя; 3 - крышка цилиндра; 4 - корпус форсунки; 5 - втулка форсунки; 6 - нижняя тарелка пружины; 7-пружина; « - верхняя тарелка пружины; 9 - пробка; 10 - регулирующий болт; 11- контргайка; 12 - пломба; 13 - сверление; 14 - топливоотводящий штуцер; 15 - топливоподводящий штуцер; 16 - щелевой фильтр; П - штанга; 18 - топливоподводящий канал корпуса форсунки; 19 - гайка распылителя; 20 - кольцевая выточка корпуса распылителя; 21 - корпус распылителя; 22 - наклонное отверстие корпуса распылителя; 23 - уплотиительное кольцо; 24 - полость форсунки; 1- распылитель до модернизации; 11- распылитель после модернизации

БИЛЕТ № 11

  1. Назначение и устройство воздухоочистителя дизеля 1-ПД4Д.

Воздухоочиститель дизеля тепловоза (рис. 23) является масляным фильтром непрерывного действия. Его к. п. д. очистки постоянен на всех режимах работы тепловоза н составляет 98,5% при сопротивлении до 20 мм вод. ст. Воздухоочиститель позволяет получать технически чистый воздух (запыленностью не более 1 мг/м3) при общей запыленности 65 мг/м3. Фильтрующими элементами воздухоочистителя служат четыре сетчатые кассеты 21 (в виде секторов), которые размещены в колесе 20. В каждой кассете 16 сеток, из них шесть № 5 X 0,7, шесть - № 3,2 X 0,5 и четыре - № 7 X 1,2. Колесо 20 вместе с кассетами 21 установлено на неподвижной оси 24, закрепленной в стенках корпуса, нижняя часть которого представляет собой масляную ванну объемом 108 л. Вращение колеса осуществляется автоматически при помощи пневмоцилиндра 12, к которому подводится воздух от компрессора. Воздух поступает в пневмоцилиндр периодически по мере срабатывания регулятора давления 3РД. При срабатывании регулятора давления поступающий в пневмоцилиндр воздух воздействует на его шток и посредством тяги 13, рычагов 15, 14, тяги 27 и ползуна 16 перемещает собачку 18, входящую в зацепление с храповой лентой (зубьями) обода колеса 20.

Рис. 22. Воздухоочиститель дизеля тепловоза:

Всасывающий патрубок турбокомпрессора; 2, 4 - стяжные хомуты; 3 - соединительный рукав; 5 - каркас воздухоочистителя; 6, 9 - люки; 7 - сетчатые кассеты; 8 - жалюзи; 10 - алнвная труба; 11- зажимы крепления кассет

Частота вращения колеса воздухоочистителя зависит от частоты срабатывания регулятора давления ЗРД и примерно составляет 0,04 - 0,15 об/ч. Очистка кассет происходит в период прохождения ими масляной ванны. Задержанная пыль выпадает в осадок на дно ванны. Пылеемкость воздухоочистителя составляет примерно 50 кг и определяется в основном емкостью масляной ванны от днища корпуса до обода колеса 20. Для спуска масла предусмотрен кран со шлангом 7, а для удаления грязи - люки 26.

В верхней части корпуса воздухоочистителя имеются люки 1, 5 и 17, которые служат для забора воздуха из машинного помещения в зимнее время, при этом жалюзи 22 полностью или частично закрываются.


Назначение и принцип действия

Определение и назначение

Плавкий предохранитель - это коммутационный электрический элемент, предназначенный для отключения защищаемой цепи путем расплавления защитного элемента. Изготовляют плавкие элементы из свинца, сплавов свинца с оловом, цинка, меди. Предназначены для защиты электрооборудо-вания и сетей от токов короткого замыкания и недопустимых длительных перегрузок.

Режимы работы предохранителя

Работа предохранителя протекает в двух резко различающихся режимах: в нормальных условиях; в условиях перегрузок и коротких замыканий.

Первый этап - работа в штатном режиме сети. В нормальных условиях нагрев плавкого элемента имеет характер установившегося процесса, при котором все выделяемое в нем количество теплоты отдается в окружающую среду. При этом, кроме элемента, нагреваются до установившейся темпера- туры и все другие детали предохранителя. Эта температура не должна превышать допустимых значений.

Силу тока, на которую рассчитан плавкий элемент для длительной рабо- ты, называют номинальной силой тока плавкого элемента (1 Н ом)- Она может быть отлична от номинальной силы тока самого предохранителя. Обычно в один и тот же предохранитель можно вставлять плавкие элементы на раз- личные номинальные значения силы тока.

Номинальная сила тока предохранителя, указанная на нем, равна наи- большему значению тока плавкого элемента, предназначенного для данной конструкции предохранителя. При номинальной силе тока избыточное ко- личество теплоты вследствие теплопроводности материала элемента успева- ет распространиться к более широким частям, и весь элемент практически нагревается до одной температуры.

Второй этап - возрастание силы тока в сети. Чтобы значительно сокра- тить время плавления вставки при возрастании силы тока, элемент выпол-няют в виде пластинки с вырезами, уменьшающими ее сечение на отдель- ных участках. На этих суженных участках выделяется большее количество теплоты, чем на широких.

При коротком замыкании нагревание суженных участков происходит на-столько интенсивно, что отводом количества теплоты практически можно пренебречь Плавкий элемент расплавляется («перегорает») одновременно во всех или в нескольких суженных местах, причем сила тока в цепи при коротком замыкании не успевает достичь установившегося значения.

В момент расплавления элемента в месте разрыва цепи возникает электри- ческая дуга. Гашение дуги в современных предохранителях происходит в ограни- ченном объеме патрона предохранителя. При этом плавкие предохранители делают такими, чтобы жидкий металл не мог повредить окружающие предметы.

Общее устройство и конструкция

В общем случае современный предохрани- тель состоит из двух основных частей: фарфо- рового основания с металлической резьбой; сменной плавкой вставки (рис. 21.1).

Плавкая вставка такого предохранителя рас-считана на номинальные токи 10, 16, 20 А. По своей конструкции предохранители могут быть резьбового типа (пробочные) или трубчатые. На рис. 21.2 представлен предохранитель ППТ-10 с плавкой вставкой ВТФ (вставка трубчатая фар-форовая) на 6 или 10 А для установок до 250 В. Основание пластмассовое, крепится к несущей конструкции винтом. Внутри трубки (ВТФ) на- ходится сухой кварцевый песок. Трубка уста- навливается в отверстие крышки предохраните- ля. К основным параметрам предохранителей относятся: номинальный ток; номинальное на- пряжение; предельно отключаемый ток.

Принцип действия

Плавкая вставка при протекании по ней тока нагревается. Во время протекания через нее боль- шого тока за счет перегрузки или короткого за- мыкания она перегорает. Время перегораний пре- дохранителей зависит от силы тока, проходящего через нить. Так, при коротком замыкании, пре дохранители перегорают достаточно быстро, и в этом наиболее опасном случае служат простой, дешевой и надежной защитой. Чтобы при перегора-нии плавкой вставки в предохранителе не проявилось опасное явление элек- трической дуги, вставка помещается в фарфоровую трубку.

Пример. Введем в цепь на рис. 21.3 предохраняющий участок длиной 30 мм из медной проволочки диаметром 0,2 мм. Площадь ее поперечного сечения; S = π r 2 = π /4 d 2 = 3,14 0,2 2: 4 = 0,0031 мм 2 .

Сопротивление предохраняющего участка составляет 0,029 Ом. Затем мысленно выделим участок такой же длины, сопротивление рабочего алюминиевого провода сече- нием 2,5 мм 2 такой же длины равно 0,00063 Ом. Так как при равных условиях количество теплоты пропорционально сопротивлению, в проволочке предохранителя вы- делится в 0,029: 0,00063 = 46 раз больше теплоты.

Выводы. При длительно допустимом для данного провода токе, он нагревается умерен- но, а температура проволочки значительно выше, но она при этом не перегорает. При коротком замыкании проволочка настолько быстро нагревается, что перегорает. За это время рабочий провод не успевает нагреться до температуры, опасной для его изоляции.


Важнейшая характеристика предохраните- ля - зависимость времени перегорания плав-кого элемента от силы тока - времятоковая характеристика представлена на рис. 21.4.

Достоинства плавких предохранителей

1. Время перегорания предохранителей зави- сит от силы тока, проходящего через нить. Так, при коротком замыкании, когда ток очень велик, предохранители перегорают достаточно быстро, и в этом наиболее опасном случае служат простой, дешевой и надежной зашитой.

2. В большинстве плавках предохранителей предусмотрена возможность безопасной заме- ны плавкой вставки под напряжением.


Недостатки плавких предохранителей

1. Если ток в цепи незначительно превышает допустимый, плавкие предохранители плохо выполняют защитную роль.

Примеры. При перегрузках до 30% срок службы проводки заметно сокращается, а предохранители не перегорают. При больших величинах перегрузок (до 50...70%) время перегорания предохранителей составляет от минуты до десятков минут. За это время изоляция перегруженных проводов успевает сильно перегреться.

2. Другим недостатком предохранителей является их повреждаемость.
После перегорания пробку нужно заменять новой (перезаряжать). Для про- стоты восстановления в конструкции плавких предохранителей применяют- ся сменные калиброванные плавкие вставки.

Современные электрические сети и устройства очень сложные и требуют надежной защиты от возможных перегрузок и коротких замыканий. Основную защитную роль в таких случаях играют различные предохранительные устройства. Среди всего разнообразия этих устройств, наиболее распространенными считаются плавкие предохранители, обладающие высокой степенью надежности, простотой в эксплуатации и сравнительно невысокой стоимостью.

Несмотря на широкое использование автоматических защитных устройств, плавкие вставки сохраняют свою актуальность при защите электронной аппаратуры, автомобильных электросетей, промышленных электроустановок и систем энергоснабжения. Они до сих пор применяются в распределительных щитах многих жилых домов, благодаря надежной работе, небольшим размерам, стабильным характеристикам и возможности быстрой замены.

Для чего применяются плавкие предохранители

В случае соединения двух проводов, подключенных к источнику тока, наступит всем известный эффект короткого замыкания. Причиной может стать испорченная изоляция, неправильное подключение потребителей и т.д. При сравнительно небольшом сопротивлении проводов, в этот момент по ним будет протекать очень высокий ток. В результате перегрева проводов загорается изоляция, что может привести к пожару.

Избежать негативных последствий вполне возможно путем включения в плавких предохранителей, известных также под наименованием пробок. В случае превышения током допустимой величины, проволочка внутри предохранителя сильно нагревается и быстро расплавляется, разрывая в этом месте электрическую цепь.

Конструкция предохранителей может быть трубчатой или пробочной. Трубочные элементы изготавливаются в закрытом фибровом корпусе, обладающим свойствами газогенерации. В случае повышения температуры внутри трубки создается высокое давление, вызывающее разрыв цепи. Пробочные предохранители имеют стандартную конструкцию, оборудованную проволокой, расплавляющейся под действием высокого электрического тока.

Существует еще одна разновидность так называемых самовосстанавливающихся предохранителей, изготовленных из полимерных материалов, изменяющих свою структуру при разных температурах. Существенный нагрев приводит к резкому изменению сопротивления в сторону увеличения, в результате чего цепь разрывается. Дальнейшее остывание вызывает уменьшение сопротивления, поэтому цепь вновь замыкается. В основном такие предохранители используются в сложных цифровых устройствах. В обычных силовых сетях они не применяются из-за высокой стоимости.

Иногда некоторые умельцы пытаются заменить сгоревший предохранитель, используя вместо него так называемые жучки, представляющие собой кусок толстого провода или тонких проволочек, скрученных в общий пучок. Такие самодельные устройства категорически запрещается использовать, поскольку ток при коротком замыкании будет недопустимо высоким. Сильный нагрев проводки вызовет ее повреждение, возгорание и пожар.

Устройство плавкого предохранителя

В состав входит корпус или патрон, обладающий электроизоляционными свойствами, и сама плавкая вставка. Ее концы соединяются с клеммами, которые последовательно включают предохранитель в электрическую цепь, совместно с защищаемым устройством или электрической линией. Материал плавкой вставки выбирается с таким , чтобы он мог расплавиться раньше, чем температурный показатель проводов выйдет на опасный уровень, либо потребитель в результате перегрузки выйдет из строя.

Исходя из конструктивных особенностей, плавкие предохранители могут быть патронными, пластинчатыми, пробочными и трубочными. Расчетная сила тока, которую способна выдержать плавкая вставка, указывается на корпусе устройства.

Довольно простая конструкция у низковольтных предохранителей. Под воздействием высокого тока плавкая вставка или токопроводящий элемент подвергается сильному нагреву, после чего при достижении определенной температуры плавится в дугогасящей среде и испаряется, разрывая защищаемую цепь. Именно так работает плавкий предохранитель в электрической цепи.

Для того чтобы горячие газы и жидкий металл не попадали в окружающую среду применяется керамический изолятор, он же корпус устройства, устойчивый к воздействию высоких температур и значительного внутреннего давления. Защитные крышки, расположенные по краям предохранителя, оборудованы специальными планками под унифицированные рукоятки, захватывающие плавкие вставки при замене негодных элементов. С помощью защитных крышек и керамического корпуса создается взрывонепроницаемая оболочка, ограничивающая коммутационную электрическую дугу.

Песок, заполняющий внутреннее пространство, ограничивает силу тока. Материал выбирается с определенными размерами кристаллов, после чего он уплотняется надлежащим образом. Как правило предохранители заполняются кварцевым кристаллическим песком, имеющим высокую химическую и минералогическую чистоту. Соединение плавкой вставки с основанием-держателем осуществляется механическим способом, при помощи контактных ножей. Для их изготовления используется медь или медные сплавы, покрытые оловом или серебром.

Характеристики плавких предохранителей

Основная характеристика заключается в прямой зависимости времени плавления от силы тока. Поэтому, то время, за которое плавкая вставка предохранителя перегорает, соответствует определенному току. Данный параметр больше известен, как времятоковая характеристика.

Кроме временного показателя существуют и другие характеристики, с помощью которых производится определение типов плавких предохранителей. Среди них, в первую очередь, следует отметить . Это наиболее допустимый ток нагрузки по условиям нагрева корпуса предохранителя в течение продолжительного времени. Выбирая устройство по этому показателю, должна учитываться нагрузка электрической цепи, а также условия работы предохранителя.

В некоторых случаях, номинальный ток может быть выше, чем ток в самой электрической цепи. Например, в пусковых устройствах электродвигателей, чтобы избежать перегорания предохранителя во время пуска. Следует учитывать, номинальный ток предохранителя должен соответствовать номинальному току заменяемого элемента.

В свою очередь, номинальный ток заменяемого элемента представляет собой максимально допустимый ток нагрузки в течение длительного времени, когда этот элемент установлен в держателе или в контактах. Кроме того, существуют номинальные токи основания и патрона предохранителя, которые нужно учитывать при выборе защитного устройства. Кроме того, используется такой показатель, как номинальное напряжение. Данный параметр представляет собой межполюсное напряжение, совпадающее с номинальным междуфазным напряжением защищаемых электрических сетей.

Для того, чтобы плавкие предохранители обеспечивали надежную защиту, значение данной величины должно быть больше или равно напряжению защищаемого объекта. Например, предохранитель с номинальным напряжением 400 вольт может использоваться для защиты цепей на 220 вольт, но ни в коем случае, не наоборот. Таким образом, эта величина характеризует возможность предохранителя своевременно разрывать электрическую цепь и гасить дугу.

Поэтому, при выборе предохранителя в качестве защитного средства, необходимо в обязательном порядке учитывать параметры, которые позволяют обеспечить надежную защиту объекта.

Виды плавких предохранителей

Для всех устройств этого типа существуют общая классификация в соответствии с их основными свойствами.

Плавкие вставки могут закрываться по-разному, в связи с этим отличаются и внешние эффекты, возникающие при отключении тока. Такие предохранители разделяются на следующие виды:

  • Открытая плавкая вставка, в которой отсутствуют устройства для ограничения объема дуги, выброса расплавленных металлических частиц и пламени.
  • Полузакрытый патрон с оболочкой, открытой с одной или двух сторон. Он создает определенную опасность для людей, находящихся поблизости.
  • Закрытый патрон. Является наиболее надежным, поскольку у него отсутствуют все вышеперечисленные недостатки. Практически все современные предохранители выпускаются именно с закрытым патроном.

Гашение дуги может выполняться разными способами. В зависимости от этого предохранители бывают с наполнителем или без наполнителя. В первом случае применяются порошкообразные, волокнистые или зернистые компоненты, а во втором - за счет движения газов или высокого давления в патроне. Конструкции самих патронов разделяются на разборные и неразборные. Первый вариант предполагает замену расплавленной вставки, а во втором случае придется менять весь элемент. В некоторых случая неразборные патроны могут быть перезаряжены в специальных мастерских.

Предохранители могут быть заменены или не заменены будучи под напряжением. В первом случае замена может быть произведена прямо руками, не касаясь частей, находящихся под напряжением. Во втором случае устройство в обязательном порядке отключается от напряжения.

Маркировка плавких предохранителей

Каждый плавкий предохранитель на схеме обозначается определенной символикой. Стандартная маркировка состоит из двух буквенных символов. Первые буквы определяют защитный интервал: a - частичный (защита лишь от коротких замыканий) и g - полный (обеспечивается защита от коротких замыканий и перегрузок).

Вторая буква означает типы защищаемых устройств:

  • G - защищает любое оборудование.
  • F - защищаются только цепи с малым током.
  • Tr - защита трансформаторов.
  • М - электродвигатели и отключающие устройства.

Более подробную информацию о маркировке предохранителей можно получить в справочниках, предназначенных для специалистов-электротехников.

Аппараты защиты предназначены для обеспечения безопасности работы электрических сетей, машин, электроустановок при возникновении них аварийных режимов (коротких замыканий, перегрузок). Однако, при неправильном монтаже и эксплуатации они сами могут быть причиной аварии, пожара и взрыва, т.к. во время их работы возникают электрические искры, дуги.

Наиболее распространенными аппаратами защиты являются:

    плавкие предохранители;

    воздушные автоматические выключатели;

    тепловые реле;

    устройства защитного отключения.

Плавким предохранителем называется устройство в котором при токе, превышающем допустимое значение, происходит расплавление плавкой вставки и размыкается электрическая цепь. Плавкие предохранители – это аппараты защиты одноразового действия.

Состав:

а) плавкая вставка;

б) контактное устройство;

в) корпус (патрон);

г) а иногда наполнитель (тальк, кварцевый песок и т.п.) для улучшения гашения дуги и визуальный показатель срабатывания.

Принцип действия плавких предохранителей основан на том, что проходящий через плавкую вставку ток выделяет тепло в соответствии с равенством гдеI- ток, проходящий через плавкую вставку, R- сопротивление плавкой вставки, t- время прохождения тока: при определенном значении тока I и времени t тепла выделяется достаточно для расплавления плавкой вставки и размыкания электрической цепи. Так осуществляется защита от тока перегрузки и КЗ.

Параметры плавких предохранителей

а) номинальный ток плавкой вставки I н.вст . – ток, на который она рассчитана при длительной работе и указывается на ней.

б) номинальный ток предохранителя I н.пр . – ток, равный наибольшему из Iн.вст и который указывается на предохранителе. На этот ток рассчитаны все токоведущие контактные части предохранителя;

в) номинальное напряжение U н.пр . – напряжение, соответствующее наибольшему напряжению, при котором его разрешается применять и указывается на предохранителе.

г) предельный ток отключения при данном напряжении I пр.пр . – наибольшее значение тока КЗ, при котором гарантируется надежность срабатывания (без разрушения корпуса).

(3 мин) Полное время отключения электрической цепи плавким предохранителем определяется временем нагревания вставки до температуры плавления, временем расплавления её и горения появляющийся при расплавлении дуги.

Зависимость полного времени отключения предохранителем цепи откл. от относительного тока перегрузки или КЗI/Iн.вст. называется защитной характеристикой, т.е. откл. = f (I / I н.вст.).

Зависимость промежутка времени, в течение которого температура элемента электрической установки достигнет предельно допустимой, от отношения фактического тока в нем I к номинальному току Iн называется тепловой характеристикой этого элемента, т.е. нагр.= f (I / I н).

Сопоставление защитных характеристик плавких предохранителей с тепловыми характеристиками защищаемых элементов позволяет оценить

возможность надежной защиты. (рис.1)

I/I Н.ВСТ и I/I h


(5 мин) Видно, что вставка с защитной характеристикой А защищает элемент э/установки с тепловой характеристикой В при любой кратности тока, а вставка с защитной характеристикой С – только при кратностях более 4-х.

Нам надо стремится чтобы время отключения было как можно меньше при действии токов к.з. и иметь задержку при токах перегрузки. Это можно сделать:

    правильно выбрать материал плавкой вставки;

    использовать металлургический эффект;

    выбрать рациональную конструкцию.

Вставки из легкоплавких металлов (олова, свинца, цинка, алюминия) имеют малую теплопроводность, поэтому нагреваются медленно, они удобны для защиты элементов от токов перегрузки.

Вставки из тугоплавких металлов (медь, серебро ) имеют малую теплоемкость и высокую теплопроводность, поэтому нагреваются быстро, дают меньшую выдержку времени при перегрузках, что ухудшает их защитные характеристики. Но они имеют большой предельный ток отключения, поэтому удобны для защиты элементов от токов К.З.

Для снижения температуры плавления (чтоб они нагревались медленнее) применяют вставки с металлургическим эффектом , для чего в середине вставки из тугоплавкого металла напаивают шарик из легкоплавкого (олово, сплав олова с кадмием и др.).

В месте напаивания шарика происходит растворение более тугоплавкого металла в легкоплавком. Такая вставка имеет лучшую защитную характеристику при токах перегрузки и меньшую температуру плавления (в 2-3 раза меньше температуры плавления основного металла).

С точки зрения конструктивного исполнения на защитную характеристику влияет длина (для предохранителей с U = 120 – 500В оптимальная длина вставки составляет 70мм) и форма вставки (вставки делают с несколькими параллельными ветвями, используют вставки с 2 – 4 короткими перешейками).

Предохранитель - это коммутационный , предназначенный для отключения защищаемой разрушением специально предусмотренных для этого под действием тока, превышающего определенное значение.

В большинстве предохранителей отключение цепи происходит за счет расплавления плавкой вставки, которая нагревается протекающим через нее током защищаемой цепи.

После отключения цепи необходимо заменить перегоревшую вставку на исправную. Эта операция производится вручную или автоматически заменой всего предохранителя.

Основными элементами предохранителя являются: корпус, плавкая вставка (плавкий элемент), контактная часть, дугогасительное устройство и дугогасительная среда.

Изготовляются на 36, 220, 380, 660 В и постоянного тока 24, 110, 220, 440 В.

Предохранители характеризуются номинальным током плавкой вставки, т.е. током, на который рассчитана плавкая вставка для длительной работы. В один и тот же корпус предохранителя могут быть вставлены плавкие элементы на различные номинальные токи, поэтому сам предохранитель характеризуется номинальным током предохранителя (основания), который равен наибольшему из номинальных токов плавких вставок, предназначенных для данной конструкции предохранителя.

Предохранители до 1 кВ изготовляются на номинальные токи до 1000 А.

В нормальном режиме теплота, выделяемая током нагрузки в плавкой вставке, передается в окружающую среду и температура всех частей предохранителя не превышает допустимую. При перегрузках или температура вставки увеличивается и она расплавляется. Чем больше протекающий ток, тем меньше время плавления. Эта зависимость называется защитной (времятоковой) характеристикой предохранителя.

Не должны отключать электрическую цепь при протекании условного тока неплавления и должны отключать цепь при протекании условного тока плавления в течение определенного времени, зависящего от номинального тока (ГОСТ 17242-79Е). Например, при номинальных токах 10-25 А плавкая вставка не должна расплавляться в течение 1 ч при токах 130% номинального и должна расплавляться в течение того же времени при токах 175% номинального.

Чтобы уменьшить время срабатывания предохранителя, применяются из разного материала, специальной формы, а также используется металлургический эффект.

Наиболее распространенными материалами плавких вставок являются медь, цинк, алюминий, свинец и серебро.